

Bachelor of Computer Applications
(BCA)

OOPs Using C++ Lab
 (DBCACO307P24)

Self-Learning Material
(SEM III)

Jaipur National University
Centre for Distance and Online Education

Established by Government of Rajasthan

Approved by UGC under Sec 2(f) of UGC ACT 1956
&

NAAC A+ Accredited

(OBCACO307P24)

Jaipur National University Course Code: DBCACO307P24

OOPs Using C++ Lab

TABLE OF CONTENTS

 Course Introduction i - vi

 Experiment 1

Implementing a Class and Object
1

 Experiment 2

Constructors and Destructors
1

 Experiment 3

Implementing Inheritance
2

 Experiment 4

Function Overloading 2

 Experiment 5

Operator Overloading
2

 Experiment 6

Inheritance with Function Overriding
3

 Experiment 7

Implementing a Copy Constructor
3

 Experiment 8

Implementing Dynamic Memory Allocation
3

 Experiment 9

Friend Function
4

 Experiment 10 4

Template Class

 Experiment 11

Implementing a Linked List 5

 Experiment 12 5

Implementing a Stack Using Class

 Experiment 13

Implementing a Queue Using Class
5

 Experiment 14

Implementing Polymorphism
6

 Experiment 15

Implementing Abstract Classes
6

OBCACO307P24

 Experiment 16

Implementing a Template Function 6

 Experiment 17

Exception Handling
7

 Experiment 18

Implementing Copy Constructor and Assignment Operator
7

 Experiment 19

Implementing Static Members
8

 Experiment 20

File Handling

8

EXPERT COMMITTEE

Prof. Sunil Gupta

(Computer and Systems Sciences, JNU Jaipur)

Dr. Satish Pandey

(Computer and Systems Sciences, JNU Jaipur)

Dr. Shalini Rajawat

(Computer and Systems Sciences, JNU Jaipur)

COURSE COORDINATOR

Ms. Heena Shrimal

(Computer and Systems Sciences, JNU Jaipur)

UNIT PREPARATION

Unit Writer(s) Assisting &

Proofreading
Unit Editor

Ms. Heena Shrimal

(Computer and Systems

Sciences, JNU Jaipur)

Ms. Rachana yadav

(Computer and Systems

Sciences, JNU Jaipur)

Dr. Deepak Shekhawat

(Computer and Systems

Sciences, JNU Jaipur)

Secretarial Assistance

Mr. Mukesh Sharma

COURSE INTRODUCTION

"Object-oriented programming is an exceptionally bad idea which could only have originated

in California."

- Edsger W. Dijkstra

Object-oriented programming (OOP) has revolutionized software development by focusing on

objects and classes to create scalable and maintainable applications. This course explores the key

OOP principles and their implementation in C++, providing students with a comprehensive

understanding of modern programming practices.

The primary objectives of this course are to introduce students to core OOP concepts such as

abstraction, encapsulation, inheritance, and polymorphism. Students will build a strong

foundation in C++, learning to leverage its features for various programming tasks. Through

practical exercises and projects, students will gain experience in flow control, functions, dynamic

memory management, file handling, and exception handling.

The course begins with an overview of different paradigms for problem-solving, highlighting the

differences between OOP and procedure-oriented programming. Students will explore the

principles of abstraction and the foundational concepts of OOP, including encapsulation,

inheritance, and polymorphism. The basics of C++ are introduced, covering the structure of a

C++ program, data types, variable declaration, expressions, operators, operator precedence,

evaluation of expressions, type conversions, pointers, arrays, and strings.

Flow control statements are essential for directing the flow of a program. This course covers the

use of if, switch, while, for, do, break, continue, and goto statements. Functions are another

crucial aspect, and students will learn about the scope of variables, parameter passing, default

arguments, inline functions, recursive functions, and pointers to functions. The course also covers

dynamic memory allocation and de-allocation using the new and delete operators, as well as

preprocessor directives.

The course then delves into C++ classes and data abstraction. Students will learn about class

definitions, class structure, class objects, class scope, the this pointer, friends to a class, static

class members, constant member functions, constructors, and destructors. Polymorphism is

explored in-depth, covering function overloading, operator overloading, and generic

programming. The necessity of templates is discussed, along with function templates and class

templates.

Inheritance is another critical concept covered in this course. Students will learn how to define a

class hierarchy and explore different forms of inheritance. The course covers defining base and

derived classes, accessing base class members, and base and derived class construction.

Destructors and virtual base classes are also discussed.

Virtual functions and polymorphism are key topics in this course. Students will learn about static

and dynamic bindings, base and derived class virtual functions, dynamic binding through virtual

functions, the virtual function call mechanism, and pure virtual functions.

Course Outcomes:

At the completion of the course, a student will be able to:

1. Acquire profound knowledge of object oriented programming.

2. Demonstrate the difference between the solutions offered by traditional

 imperative problem solving method and object-oriented method

3. Explain the class inheritance, data encapsulation, polymorphism as fundamental building

blocks to generate reusable code.

4. Understand and implement error handling and file handling routines.

Acknowledgements:

The content we have utilized is solely educational in nature. The copyright proprietors of the materials

reproduced in this book have been tracked down as much as possible. The editors apologize for any

violation that may have happened, and they will be happy to rectify any such material in later versions of

this book.

i

1

Assignment 1: Implementing a Class and Object

Program Statement: Write a C++ program to create a class Rectangle with attributes

length and width. Include member functions to:

1. Set the dimensions of the rectangle.

2. Calculate and return the area of the rectangle.

3. Calculate and return the perimeter of the rectangle.

4. Display the dimensions, area, and perimeter.

Solution Description: This program will help students understand how to define a class

with private attributes and public member functions. The Rectangle class will encapsulate

the properties of a rectangle and provide methods to manipulate and access these

properties. The program will include a constructor to initialize the rectangle's dimensions,

methods to calculate the area and perimeter, and a display function to output the rectangle's

details. This assignment reinforces concepts of encapsulation, data hiding, and basic object

manipulation in C++.

Assignment 2: Constructors and Destructors

Program Statement: Create a class Complex to represent complex numbers. Implement:

1. A default constructor to initialize the real and imaginary parts to zero.

2. A parameterized constructor to initialize the real and imaginary parts to given

values.

3. A destructor to display a message when an object is destroyed.

4. A member function to display the complex number in the form a + bi.

Solution Description: This assignment emphasizes the use of constructors and destructors

in a class. The Complex class will have attributes for the real and imaginary parts.

Constructors will initialize these attributes, either to default values or to user- provided

values. The destructor will be used to demonstrate when an object goes out of scope and is

destroyed. The display function will format and print the complex number. This task helps

in understanding object lifecycle management and resource cleanup in C++.

Assignment 3: Implementing Inheritance

Program Statement: Create a base class Shape with a pure virtual function area(). Derive

two classes Circle and Square from Shape. Implement:

1. The constructor for each derived class.

2

2. The area () function to calculate and return the area for each shape.

3. A function to display the area.

Solution Description: This assignment introduces the concept of inheritance and

polymorphism. The Shape class serves as an abstract base class with a pure virtual

function area(). The derived classes Circle and Square implement the area() function to

calculate the area specific to each shape. The constructors initialize the radius and side

length, respectively. By using base class pointers to call the area() function, students will

understand dynamic binding and polymorphism in C++.

Assignment 4: Function Overloading

Program Statement: Write a C++ program to demonstrate function overloading by

creating a class Math with multiple add() functions to handle:

1. Addition of two integers.

2. Addition of two floating-point numbers.

3. Addition of three integers.

Solution Description: Function overloading allows multiple functions with the same

name but different parameters. The Math class will have overloaded add() functions to

handle different types and numbers of arguments. This program will show how the same

function name can be used to perform different operations based on the input parameters.

This assignment helps in understanding the concept of function overloading and its

applications in C++.

Assignment 5: Operator Overloading

Program Statement: Create a class Complex to represent complex numbers. Overload the

+ operator to add two complex numbers. The program should:

1. Include a constructor to initialize the real and imaginary parts.

2. Overload the + operator.

3. Display the result of the addition.

Solution Description: Operator overloading allows operators to be redefined for user-

defined types. The Complex class will include a constructor for initialization and an

overloaded + operator to add two Complex objects. The program will create Complex

objects, perform the addition using the overloaded operator, and display the result. This

assignment covers operator overloading and custom behavior for operators, allowing

3

students to extend the functionality of existing operators to work with user-defined types.

Assignment 6: Inheritance with Function Overriding

Program Statement: Create a base class Animal with a virtual function sound(). Derive

two classes Dog and Cat from Animal and override the sound() function in each derived

class. The program should:

1. Create objects of Dog and Cat.

2. Call the sound() function using a pointer to the base class.

Solution Description: Function overriding allows a derived class to provide a specific

implementation of a function already defined in its base class. The Animal class will have a

virtual sound() function, which will be overridden in the Dog and Cat classes to provide

specific sounds. By using base class pointers to call the sound() function, the program will

demonstrate polymorphism. This assignment helps in understanding inheritance, function

overriding, and runtime polymorphism in C++.

Assignment 7: Implementing a Copy Constructor

Program Statement: Create a class Book with attributes title, author, and price. Implement:

1. A parameterized constructor to initialize the attributes.

2. A copy constructor to create a copy of a Book object.

3. A function to display the book details.

Solution Description: A copy constructor is used to create a new object as a copy of an

existing object. The Book class will have attributes for the title, author, and price, and a

parameterized constructor to initialize them. The copy constructor will create a new Book

object with the same attribute values as an existing object. The display function will print

the details of the book. This assignment helps in understanding deep copying and the role of

copy constructors in C++.

Assignment 8: Implementing Dynamic Memory Allocation

Program Statement: Create a class Student with attributes name and marks. Implement:

1. A constructor to dynamically allocate memory for the name.

2. A destructor to deal locate the memory.

3. A function to display the student details.

Solution Description: Dynamic memory allocation involves allocating memory at

4

runtime using pointers. The Student class will have a constructor that allocates

memory for the name attribute and a destructor that deal locates this memory to

prevent memory leaks. The display function will output the student's details. This

assignment helps in understanding dynamic memory management, constructors,

destructors, and the importance of resource management in C++.

Assignment 9: Friend Function

Program Statement: Create a class Box with private attributes length, width, and height.

Implement:

1. A constructor to initialize the attributes.

2. A friend function to calculate and return the volume of the box.

3. A function to display the dimensions and volume of the box.

Solution Description: A friend function is a non-member function that has access to the

private and protected members of a class. The Box class will have a constructor to initialize

its dimensions and a friend function to calculate the volume. The display function will print

the box's dimensions and volume. This assignment helps in understanding friend functions

and their use cases in C++.

Assignment 10: Template Class

Program Statement: Write a template class Array that can store elements of any data type.

Implement:

1. A constructor to initialize the array with a given size.

2. A function to add elements to the array.

3. A function to display the elements of the array.

Solution Description: Templates allow classes and functions to operate with generic types.

The Array template class will support any data type, providing flexibility and reusability.

The constructor will initialize the array with a specified size, the function to add elements

will store values in the array, and the display function will print all elements. This

assignment helps in understanding templates and their benefits in creating generic and

reusable code in C++.

Assignment 11: Implementing a Linked List

Program Statement: Create a class Linked List to represent a singly linked list of integers.

5

Implement:

1. A constructor to initialize an empty list.

2. A function to add a node at the end.

3. A function to delete a node from the beginning.

4. A function to display the elements of the list.

Solution Description: The Linked List class will encapsulate the properties of a singly

linked list. The class will have a nested Node structure with an integer data field and a

pointer to the next node. The constructor will initialize an empty list. The add Node

function will append nodes to the end of the list, while the delete Node function will

remove the node at the beginning. The display function will traverse and print the list

elements. This assignment reinforces concepts of dynamic memory allocation and pointer

manipulation in C++.

Assignment 12: Implementing a Stack Using Class

Program Statement: Create a class Stack to represent a stack of integers. Implement:

1. A constructor to initialize an empty stack.

2. A function to push an element onto the stack.

3. A function to pop an element from the stack.

4. A function to display the elements of the stack.

Solution Description: The Stack class will use an array or a linked list to store stack

elements. The constructor will initialize the stack, and the push function will add elements

to the top. The pop function will remove the top element, and the display function will print

all elements from the top to the bottom. This assignment helps in understanding stack

operations and their implementation in C++.

Assignment 13: Implementing a Ǫueue Using Class

Program Statement: Create a class Ǫueue to represent a queue of integers. Implement:

1. A constructor to initialize an empty queue.

2. A function to enqueue an element at the end.

3. A function to dequeue an element from the front.

4. A function to display the elements of the queue.

Solution Description: The Ǫueue class will use an array or a linked list to manage queue

elements. The constructor will initialize the queue, and the enqueue function will add

6

elements to the end. The dequeue function will remove elements from the front, and the

display function will print all elements from the front to the end. This assignment covers

the concept of queue operations and their implementation in C++.

Assignment 14: Implementing Polymorphism

Program Statement: Create a base class Vehicle with a virtual function display(). Derive

two classes Car and Bike from Vehicle. Override the display() function in each derived

class. The program should:

1. Create objects of Car and Bike.

2. Call the display() function using a pointer to the base class.

Solution Description: Polymorphism allows methods to be used interchangeably based on

the object type at runtime. The Vehicle class will have a virtual display() function, which

will be overridden in the Car and Bike classes to provide specific implementations. The

program will use base class pointers to demonstrate polymorphism by calling the display()

function on Car and Bike objects. This assignment helps understand runtime

polymorphism and dynamic binding in C++.

Assignment 15: Implementing Abstract Classes

Program Statement: Create an abstract base class Employee with a pure virtual function

calculate Salary(). Derive two classes Full Time Employee and Part Time Employee

from Employee. Implement:

1. The calculate Salary() function in each derived class.

2. A function to display the salary details.

Solution Description: Abstract classes cannot be instantiated and are used to define

interfaces for derived classes. The Employee class will have a pure virtual calculate Salary()

function, making it abstract. The Full Time Employee and Part Time Employee classes will

provide concrete implementations of the calculate Salary() function. The display function

will print the salary details. This assignment helps understand abstract classes, pure virtual

functions, and their role in defining interfaces in C++.

Assignment 16: Implementing a Template Function

Program Statement: Write a template function find Max to find the maximum of two

elements. The program should:

7

1. Use the find Max function with different data types (int, float, char).

2. Display the results.

Solution Description: Template functions allow a function to operate with generic types.

The find Max function will compare two elements of any data type and return the

maximum. The program will demonstrate the function with different data types,

showcasing its versatility and reusability. This assignment helps understand the concept of

templates and their benefits in creating generic functions in C++.

Assignment 17: Exception Handling

Program Statement: Create a C++ program to demonstrate exception handling. The

program should:

1. Implement a function that performs division of two numbers.

2. Throw an exception if the divisor is zero.

3. Catch the exception and display an appropriate error message.

Solution Description: Exception handling allows a program to handle runtime errors

gracefully. The division function will throw an exception if an attempt is made to divide

by zero. The program will catch the exception and display an error message, preventing

the program from crashing. This assignment helps in understanding try, catch, and throw

mechanisms in C++ for robust error handling.

Assignment 18: Implementing Copy Constructor and Assignment Operator Program

Statement: Create a class String to represent a dynamic string. Implement:

1. A parameterized constructor to initialize the string.

2. A copy constructor to create a copy of a String object.

3. An overloaded assignment operator to assign one String object to another.

4. A function to display the string.

Solution Description: The String class will manage a dynamically allocated character

array. The copy constructor will ensure a deep copy of the string, and the assignment

operator will handle assignment between objects, preventing memory leaks. The display

function will print the string. This assignment covers dynamic memory management,

copy constructors, and assignment operators in C++.

Assignment 19: Implementing Static Members

Program Statement: Create a class Counter with a static data member to keep track of the

8

number of objects created. Implement:

1. A constructor to increment the counter.

2. A static member function to display the count of objects created.

Solution Description: Static members are shared among all objects of a class. The Counter

class will have a static data member to count the number of objects. The constructor will

increment this counter, and the static member function will display the count. This

assignment helps in understanding static data members and functions, and their shared

nature across all instances of a class in C++.

Assignment 20: File Handling

Program Statement: Create a class File Handler to perform basic file operations.

Implement:

1. A function to write data to a file.

2. A function to read data from the file and display it.

Solution Description: File handling allows programs to read from and write to files. The

File Handler class will use file streams to perform these operations. The write function will

output data to a file, and the read function will input data from the file and display it. This

assignment helps in understanding file I/O operations and their implementation using file

streams in C++.

	Microsoft Word - C++ lab
	db946444916e1077289e9c253a67e2bfed628445c888866449e09971a468807f.pdf
	Microsoft Word - C++ lab

